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ABSTRACT

The linear quadratic regulator (LQR) is widely used in active structural controls (ASCs). However, at the present stage, the influence of the design parameters (LQR weighing matrices) on the vibration characteristics of the control system has not been explicitly expressed. In particular, the estimation of the required control force has not been conducted. Therefore, the LQR weighting matrices are mainly selected by trial and error approach, making it very difficult to design a control system that achieves the desired performance. To solve this problem, an equivalent model of the single-degree-of-freedom active model (structure with active control) is constructed, using which, a calculation method for the weighing matrices that does not require a trial and error approach to satisfy the desired control performance is proposed. Thereafter, the concept of the transitional response spectrum, which is widely used in structural design, is promoted as a control force spectrum that can be used to estimate the maximum control force. Finally, the design of a passive base isolation (PBI) reactor is discussed as an example, and the performance-oriented design method for the PBI structure combined with ASC is proposed that simultaneously satisfies the limitation conditions of the responses and control force. 

Keywords: Active structure control; Base-isolation structure; Linear-quadratic regulator (LQR), Equivalent model


1. INTRODUCTION 

To minimize damages to superstructures due to violent earthquakes and to resume operation immediately after earthquakes, in Japan, the use of passive base isolation (PBI) structures increased sharply after the great Hanshin earthquake (Y. Tanaka et al., 2011). At present, the PBI structure is widely used globally, not only in public buildings and high-rise apartments, but also in major constructions (G. P. Warn et al., 2012). Applying the PBI structure to nuclear power stations is a topic of worldwide research (S. Ryu et al., 2013, N. Takemi et al., 2013, A. S. Whittaker et al., 2014, H. Asano et al., 2014 and M. Kumar et al., 2017). However, by the end of 2017, there were no instances of nuclear power stations using the PBI structure in Japan (T. Hiraki et al., 2017). A possible reason for this is that though the PBI structure can decrease the absolute acceleration response on superstructures, it is difficult to control the displacement response within the allowable range, because the natural period of the PBI layer is relatively long (M. Kumar et al., 2017). To solve this problem, the authors conducted research on the PBI structure combined with active structural control (ASC) (Y. Chen et al., 2018 and K. Miyamoto et al., 2018). The linear quadratic regulator (LQR) is a widely used method in ASC controller design. The controller designed by LQR ensures asymptotic stability and minimizes control energy (A. Preumont et al., 2008). Thus, LQR is suitable for vibration control, and is widely used in ASCs (F. Casciati et al., 2012 and S. Korkmaz et al., 2011).
In conventional structural design, by using the response spectra of earthquake waves, it is possible to estimate the maximum responses of the model, without the need of numerical simulations. If the equivalent natural period and equivalent damping ratio of the ASC model can be described theoretically, the response spectrum can be used at the controller design stage, and the controller design can be simplified. However, at the present stage, using the LQR weighing matrices as parameters of LQR design, the effects on the equivalent natural period and the equivalent damping ratio of the control system are ambiguous. Hence the LQR weighing matrices are chosen using a trial and error approach, to achieve the desired control performance (A. Preumont et al., 2008). To solve this problem, T. Fujii et al. considered the single degree of freedom (SDOF) semi-active structural control system as a research topic, and theoretically clarified the influence of the LQR weighing matrices on the vibration characteristics of the control system (T. Fujii et al., 2013). However, the model used in T. Fujii et al. did not consider the structural internal damping, thus limiting its fields of application, making it incompatible with the model of the PBI structure combined with ASC. On the other hand, V. K. Elumalai et al. considered the SDOF magnetic levitation system as a research topic, and the paper proposed an algebraic method for calculating the LQR weighing matrices, which achieves the equivalent natural angular frequency and equivalent damping ratio (V. K. Elumalai et al., 2017). However, V. K. Elumalai et al. did not investigate the impact of specific factors on control system vibration characteristics, making it difficult to use the proposed method in ASC design. Moreover, when ASC is applied in construction, the required control input can be significantly large, as expected. It is therefore necessary to deduce the theoretical equation that can be used to theoretically estimate the maximum control force.
In this paper, the performance-oriented design method is proposed that simultaneously satisfies the limitation conditions of the responses and control force. Moreover, it requires neither trial and error nor numerical simulations, which simplifies the controller design.
Figure 1. SDOF model with active control



The equivalent model [Figure 1(b)] of the active model [Figure 1(a)], considering structural internal damping, is constructed. The influence of the design parameters (weighing matrices) on the structural characteristics (stiffness coefficient and damping coefficient) and vibration characteristics (natural period and damping ratio) is theoretically clarified. A calculation method for the LQR weighing matrices is proposed by using the constructed equivalent model to achieve the desired equivalent natural period and equivalent damping ratio. Furthermore, a new spectrum of a specific earthquake wave called the control force spectrum is proposed, which can be used to estimate the necessary maximum control force at the controller design stage. This makes it possible to calculate the weighing matrices for the design of the controller, which simultaneously satisfy the limitation conditions of responses and control force. Moreover, it requires neither trial and error nor numerical simulations. The remainder of the paper is organized as follows.
The mathematical modeling of the SDOF active model is presented in Section 2. Section 3 presents the construction of the equivalent model of the active model, considers the influence of the weighing matrices on the structural characteristics of the equivalent model, and details the calculation method for the weighing matrices. A control force spectrum is proposed in Section 4. In Section 5, a controller design method for the PBI structure with ASC that simultaneously satisfies the limitation conditions of responses and control force is proposed. Section 5 also presents a discussion of the design of the PBI type reactor as an example, to confirm the validity of the proposed design method.
2. DESIGN OF CONTROL SYSTEM 

Given that it is necessary to solve the algebraic Riccati equation (ARE), the structure is assumed to be an SDOF model. The dynamics of an SDOF control system are described by the following equation:


									(1)

where m is the mass; c0 is the damping coefficient; k0 is the stiffness coefficient of the structure, which is defined by (2) and (3); x(t), d(t), and u(t) are the response displacement, disturbance force, and control force, respectively.


												(2)


											(3)

where T0 is the natural period of the structure, and 0 is the damping ratio.
The state-space representation of (1) is


										(4)

where z(t) is a state vector, A is a system matrix, Bu is input matrices for u(t), Bd is input matrices for d(t), which is defined by (5).


											(5a)


											(5b)


											(5c)
Figure 2. Block diagram of control system



Figure 2 presents the block diagram of the control system used in this study.
The feedback control law


		(6)

is used, where KP is the state-feedback gain that is designed using the LQR method, which determines the state-feedback gain by minimizing the following performance index:


		(7)
where R (> 0) is the weighing matrix for the control force, and Q is the weighing matrix (semi-positive) defined by


												(8)

Thus, KP is defined as


		(9)

where P is a semi-positive symmetrical solution of the following ARE:


		(10)


3. EQUIVALENT MODEL

3.1 Solution of the ARE

Given that the solution of the ARE is a symmetrical matrix, it is written as


		(11)

Substituting (5), (8), and (11) into (10) yields


		(12)

Rewriting (12) yields


								(13)

Expanding (13) yields

	(14a)


	(14b)


	(14c)

The elements of the P matrix, such as p11, p12, and p22 are obtained using the ARE in (10):


									(15)


								(16)


										(17)

Moreover, given that P is a semi-positive matrix, it yields


										(18)

Finally, p12 and p22 are defined as


								           (19a)


							           (19b)

From (17) and (19), the analytical solution of the ARE can be obtained using the SDOF model.

3.2 Construction of the equivalent mode

Substituting (5c) and (11) into (9) , KP is


								(20)

where KP1 and KP2 are


										           (21a)


						           (21b)


Substituting (20) and (5a) into (6) yields the control force:


									(22)

Substituting (22) into (1) gives the vibration equation of the equivalent model:


								(23)

where keq and ceq represent the stiffness coefficient and damping coefficient of the equivalent model and are defined by the following equation.


										           (24a)


							           (24b)

From (24a), it can be seen that keq is dependent on k0, q1, and R. When q1=0, the value of keq is equal to k0. When q1 is increased, the value of keq increases. When the value of R is sufficiently large, the value of keq approaches k0.
From (24b), it can be seen that ceq is dependent on c0, k0, m, q1, q2, and R. When q1=q2=0, the value of ceq is equal to c0. When q1 or q2 is increased, the value of ceq increases. However, the influence of q1 on ceq is smaller than that of q2, given that q1 is in the double route. When the value of R is sufficiently large, the value of ceq approaches c0.


As is commonly known, the natural angular frequency , natural period Teq, and damping ratio  of the equivalent model are


											           (25a)


											           (25b)


											           (25c)

In addition, the control force of the equivalent model can be obtained by the difference between (1) and (23).


									(26)

From (26), the control force of the equivalent model can be calculated using the responses of the equivalent model and k0, keq, c0 and ceq.
Solving (24a) and (24b), the elements of Q, such as q1 and q2, can be determined by



										           (27a)


							           (27b)

Furthermore, if the control system is represented in a controllable canonical form, (27) is identical to that proposed by V. K. Elumalai et al.
The calculation procedure of the LQR weight selection method is summarized below.
Step 1. 
Specify the natural period and damping ratio of the structure (T0 and ), and calculate the value of k0 and c0 using (2) and (3).
Step 2. Specify the desired natural period and damping ratio of the control system (Teq,tar and ζeq,tar), and calculate the value of keq,tar and ceq,tar using (2) and (3).
Step 3. Arbitrarily assign a value to R. Even if the value of R is arbitrary, it does not affect the control system in this design procedure.
Step 4. Substitute keq,tar, k0, and R into (27a), and calculate q1 in the weighing matrix Q.
Step 5. Substitute ceq,tar, m, k0, c0, R, and q1 calculated in Step 4 into (27b), and calculate q2 in the weighing matrix Q. If q2 ≥ 0, use the calculated values of q1 and q2 to design the control system. If q2<0 because the semi-positive limitation of Q cannot be satisfied, go back to Step 2 and review Teq,tar or ζeq,tar.
Figure 3 presents the flowchart for the calculation method of the weighing matrices.

Figure 3. Flowchart of caculate procedure



4. CONTROL FORCE SPECTRUM

This section presents the calculation of the theoretical formula for the maximum necessary control force, and the proposal of the control force spectrum.
From (24a) and (24b), when q1=0, the equivalent stiffness coefficient keq and equivalent damping coefficient ceq are expressed by the following equations:


										            (28a)


							           (28b)

Therefore, at q1=0, the equivalent natural angular frequency ωeq, the equivalent natural period Teq, and the equivalent damping ratio ζeq are given by the following equations, respectively:


											           (29a)


											           (29b)


								           (29c)

From (28), it can be seen that by setting q1 = 0, the equivalent damping ratio ζeq can be adjusted without changing the equivalent natural period Teq from initial natural period T0 . By substituting (28a) into (26), the following equation can be obtained:


											(30)

Furthermore, by dividing (30) by the weight of the model m, the shear force coefficient of the control force Cu can be obtained.


										(31)

where g is the gravitational acceleration. Therefore, the shear force coefficient of the maximum necessary control force Cu,peak can be calculated using the following equation:


										(32)

where SV (T0 ,ζeq) is the value of the response velocity spectrum when the equivalent natural period is T0 and the equivalent damping ratio is ζeq . Moreover, by substituting c0=2ζ0ω0m and ceq=2ζeqω0m into (32), the shear force coefficient spectrum of the control force (control force spectrum) is


							(33)

From (33), by setting q1=0, the control force spectrum SC is calculated without using a time domain numerical simulation. By the velocity response spectrum of the earthquake wave SV, it is possible to evaluate the magnitude of the control force. Moreover, if the initial natural period T0 and the equivalent damping ratio ζeq are fixed, the maximum control force is proportional to the initial damping ratio ζ0.


5. DESIGN METHOD FOR PBI STRUCTURE WITH ASC

In this section, a controller design method for the PBI structure with ASC, which can satisfy response limitations and control force limitations simultaneously, is proposed using the weighing matrices calculation formulas (27) and the control force spectrum (33). Moreover, the design of the PBI type reactor with ASC is considered as an example, to confirm the validity of the design method.

5.1 Publication Quality and Uniformity

Step 0. Specify the following: 
mass of structure m 
earthquake used in design procedure 
limitation of response displacement xlim 

limitation of response velocity 

limitation of response absolute acceleration 
limitation of initial damping ratio (passive damper) ζ0,lim 
limitation of shear force coefficient of control force Cu,lim
Step 1. Select the equivalent model (equivalent natural period Teq and equivalent damping ratio ζeq) that satisfies the limitation conditions of the responses (displacement, velocity, and acceleration) in Step 0, From the response spectrum.
Step 2. Using the control force spectrum (33) of the earthquake wave used in the design procedure, select the model that satisfies the limitation of the shear force coefficient of the control force Cu,lim and the limitation of the initial damping ratio ζ0,lim , from the equivalent models selected in Step 1. Specify the initial damping ratio ζ0 of the equivalent model.
Step 3. Arbitrarily assign a value to R, set q1=0, and calculate q2 using (27b) for the selected models. 
Step 4. Calculate the state feedback gain KP by (9), using the weighing matrices Q and R determined in Step 3.
Step 5. Confirm if the designed controller satisfies the limitation conditions, using a time domain numerical simulation.

5.2 Required Registration

An artificial earthquake wave is used, specifically, Art Hachinohe (phase characteristic: Hachinohe 1968 EW), which has a pseudo velocity response spectrum pSV of 200 cm/s (ζ=0.05) in the region after the corner period 0.64 s (Figure 4). In addition, the disturbance force d(t) is calculated by the following equation:


												(34)

The structure is a PBI reactor building, and the mass of the structure is approximately 3.7×108 kg (S. Ryu et al., 2013).


Figure 4  Art Hachinohe wave

(b)  Pseudo velocity response spectrum

(a)  Accelerogram


Step 0. Limitation conditions:
xlim = 40 cm




ζ0,lim = 0.1
Cu,lim = 0.1

Figure 7  Relationship between ζ0 and

 Cu

Figure 6  Velocity response spectrum

Figure 5  Relationship between SD and SA



Step 1. Figure 5 presents the relationship between SD and SA of Art Hachinohe, and Figure 6 presents the SV of Art Hachinohe. Given that the reduction in responses is not expected even if the equivalent attenuation factor is set to 0.4 or more, the equivalent attenuation factor was examined up to 0.4. Table 1 presents the six models satisfying the response limitation conditions of Step 0.

Table 1. Peak responses of selectable models



Step 2. Using (33), Figure 7 presents the relationship between the initial damping ratios ζ0 and peak shear force coefficient of control force Cu,peak of the six models selected in Step 1 and the maximum shear force coefficients of the control force Cu,peak. From Figure 7, only the model with the equivalent natural period Teq=2.5 s and equivalent damping ratio ζeq=0.2 satisfies the limitation condition of the initial damping ratio of ζ0,lim and shear force coefficient of the control force Cu,lim. Moreover, the model with the initial damping ratio ζ0=0.05 has a relatively less passive damper, and is therefore a passive-damper sensitive model (Model 1). The model with the initial damping ratio of ζ0=0.1 has a relatively low control force, and is therefore a control-force sensitive model (Model 2). In addition, to realize the equivalent model with the equivalent damping ratios of 0.3 and 0.4, it is necessary to increase Cu,lim or ζ0,lim.
Step 3. Fixing R=1 and q1=0, calculate q2 using (27b). Table 2 presents q2 calculated using (27b).


Table 2  Parameters of models






Step 4. Table 3 presents the state feedback gain KP of Models 1 and 2, calculated using (21).

Table 3  Parameters of models



Step 5. 

Figure 8 presents the responses (displacement x, velocity , and absolute acceleration ) and the shear force coefficient of the control force Cu of Models 1 and 2.

(a)  Response displacement

(b)  Response velocity

(d)  Shear force coefficient of control force

(c)  Response absolute acceleration



Figure 8  Numerical simulation results of models

From the design example, the following results were obtained:
(1) From Figures 8(a)-(c), it can be seen that Models 1 and 2 satisfy all the limitation conditions of Step 0. The validity of the proposed design method can therefore be confirmed.
(2) From Figures 8(a)-(c), it can be seen that the responses of Models 1 and 2 are identical. It can therefore be confirmed that the equivalent natural period Teq and equivalent damping ratio ζeq are the same for Models 1 and 2.
(3) From Figure 8(d), it can be seen that the maximum shear force coefficient of the control force of Model 1 is larger than that of Model 2. This is because the initial damping ratio of Model 1 (ζ0=0.05) is smaller than that of Model 2 (ζ0=0.10).


6. CONCLUSIONS

In this study, an equivalent model of an active model with a controller designed using an LQR was constructed for an SDOF model. This paper also presents the calculation method for determining the weighing matrices to satisfy the desired equivalent natural period Teq and equivalent damping ratio ζeq, using the constructed equivalent model. Furthermore, in this paper, the control force spectrum is proposed, which can be used estimate the maximum necessary control force. This makes it possible to design a controller that satisfies the limitation conditions of the responses and maximum control force without trial and error, by using the conventional response spectrum of an earthquake. In the numerical design example of the PBI type reactor building with ASC, the validity of the proposed design method is verified. This study clarified the following points:
(1) The analytic solution of the ARE used in the LQR can be obtained for SDOF model with damping coefficient, and the influence of the weighing matrices on vibration characteristics can be theoretically demonstrated.
(2) By constructing an equivalent model, which has the same natural period and damping ratio as the active model, it is possible to evaluate the peak responses of the active model without the need of numerical simulations, by using the response spectrum of an earthquake wave. It is therefore possible to calculate the weighing matrices that satisfy the desired responses.
In this paper, a control force spectrum that can be used to estimate the required maximum control force for a specific earthquake wave was proposed. By using the proposed control force spectrum, the required maximum control power can be estimated at the controller design stage, without the need of numerical simulations.
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Welcome

On behalf of the Anti-Seismic Systems International Society (ASSISi) and the Russian
Assodiation for earthquake engineering and protection from natural and manmade

hazards (RAEE) we warmly invite you to join us in St. Petersburg, Russia, on 1-6 July 2019 for

the 16th World Conference on Seismic Isolation, Energy Dissipation and Active Vibration
Control of Structures.

We believe this conference presents a unique opportunity for sharing the
latest international earthquake engineering knowledge and we encourage you to start
planning your contributions and attendance at the conference.

Please note the key dates for abstractand paper submission. As the conference date
draws closer the website wil be updated with details of the keynote
speakers, programme and other conference activities.

At the same dates in the parallel session the Xill Russian National Conference on
Earthquake Engineering and Seismic Zoning will be held

We look forward to welcoming you allin St. Petersburg!

Important Dates

Abstract Submission Deadline - 01 december 2018
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